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ABSTRACT

In this paper we consider systems of weakly coupled nonlinear second

order elliptic and parabolic equations with nonlinear , pocsibly coupled ,

boundary conditions. The aim is to find invariant sets of the form

S = {(u
1
,u
2

, ..., u )Ip . (x ) < u.(x) < ~p . (x) a.e.}

for certain nonlinear reaction—diffusion equations:

u
~~
+ Lu=F (U ) in ~~~~~

BU = G(U) on ~~

where L = (L ,L ,...,L ) (L. a linear second order ell iptic ~~~rator)1 2  m

and B = (B
1
,B
2
, . . . , B )  (B. a linear boundary opera tor of a ~‘~11~?ral

type) and U = (u ,u , . . ., u ) .  The main result essentiall y’ s~iy~ that1 2  m

s t uk  < U < ‘ Y}  is an invariant set if

L~ < F(~~) and L~Y > F(’Y) in ~l

and

B4 < G (~~) and B’~ > G( ’~) on

The work also includes some existence results for the pa rabol ic problem

and the associated nonlinear elliptic problem.

AIlS (MOS) Subject Classifications — 351(55, 35K60, 35J55 , 3~~

Key Words — Reaction—diffusion , Nonlinear ell iptic , Nonlin~ r~ v

conditions , Invarian t sets

• Work Unit Number 1 - Applied Analysis 
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SIGNIFICANCE AND EXPLANATION

systems of coupled second order parabolic equations, or reaction—

• diffusion equations, arise in the mathematical models of various physical,

chemical and biological processes. They describe the evolution in time of

two or more substances which interact and diffuse. More specifically ,

• reaction-diffusion equations arise in chemical reactor theory (where the

components are concentrations of chemicals), in ecology (densities of

species), in the theory of combusion (densities of fue l and thermal

energy), and in the theory of nerve impulse transmission (densities of

chemicals and electric charges). At any instant of time the densities ,

which are functions of the space variables, describe the state of the

system. An invariant set S is a collection of states with the property

that once the system is in a state which is a member of S then, however

else the state will evolve, it will at all later times still be a member

of S. Symbolically, if U(t) is the state of time t then 
• 
U(t

0
) C S

implies U(t) € S for all t > t
0
. In this paper criteria are found

-

which can be used to find invariant sets which are described in terms of

upper and lower bounds for the various components of the state. As a

by-product existence and comparison results for the associated elliptic

problems are obtained. In all results both the equations and the boundary

conditions are allowed to be nonlinear.

The responsibility for the wording and views expressed in this descriptive
• summary lies with MRC, and not with the author of this report.
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~~~~I~N!AYAI(ANI ffT cONS
1. Introduction. 

~~ ~~~~~ SP1.CIAL

consider the reaction-diffusion equations

(DE) + L
ku.K 

f
k
(x.t,(

~ 
1 < k < m , •.~2iJ..............__[...__ ~where L

1
,L
2
4...,L are second order elliptic partial differential operators on a

• bounded open set 0 C Rn together with the conditions

(BC) = 
~k
(
~
cW  1 < k < in

imposed on U(t) = (u
1
(, t),u2 (- ,t),...,u ( , t)) at the boundary . For tE (O ,T) we

may think of U(t) as belonging to some Banach space X of real valued functions from

0 into Rm . L~t K C (0,1) x X be a set whose sections K ( t )  are closed convex sets

in X. K is then called an invariant set for the problem (DE)—(BC) if U(t~) e K(t
0
)

implies that the solution U(t) C K(t) for all t e (t0
,T). Reaction—diffusion

equations have lately received a great deal of attention. Their interest lies par-

tially in the fact that they occur in the mathematical models for a wide range of

8 
natural processes (see e.g. [4], [5], [6], [24] and the references given in those

papers). In particular there has been interest in the existence of invariant sets.

Usually some restrictions are put on the form of K. For example, Weinberger 123)

considered the case where K(t) is independent of t and consists of functions which

take on their values in some closed convex subset C C R~. Unless the elliptic oper-

ators L
~ 

are the same f~r all i more restrictions have to be placed on C ([11,

(4]) such as requiring that C = [a
1,6

1
] x [a

2
,~~~ ] x ... ~ [s ,~~ J. The present

author [13] obtained results for invariant sets of the form

K(t) = {(u
1
,u2,...,u ) I~~.(x,t) < u.(x ,t) <~~ .(x ,t) ~ x €  0). In this paper similar

results are obtained for the case where nonlinear boundary conditions are allowed .

In order to handle the nonlinear boundary conditions we use the nonlinear semi-

group theory of Crandall, Liggett and Pazy which seems to be particularly well suited.

Sponsored by the United States Army under contract No. DAAG29—75— C—0024.
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This approach reduces the problem to one of studying invariant sets for associated

elliptic problems. The solutions of the elliptic problem which we consider will be

distributional solutions in (H
]
(Q))m. The solution of the reaction-diffusion equations

which we will look at will also be of a weak type. This then means that the results

on invariant sets which we obtain will also be valid for solutions of stronger type

such as classical solutions or solutions U € c
]
((O ,T),(L

2(0))in) fl C°([0,T),D) where

DC cH l ())in is the domain of (L ,L L ) .
1 2  m

• Although the main theorems (9, 10, 11, 16) can be read with only the aid of a few

well marked definitions (the hypotheses being explicitly stated), we still feel it

might be helpful to the reader if we state a somewhat simplified version of the invar-

iant set theorem for the parabolic problem and give one simple application.

Let L.K
(k = 1,2,... ,m) be uniformly strongly elliptic with coefficients in

Let the functions f . and g. be of class C1(0 X R1 X R
m
) and assume the boundary

conditions are of the form

E
k
U
k ~k~~~ k 

+ Y k
U
k 

= ~~~~~~~~ •Um
) on ~0 ,

where 8k is a nowhere vanishing C1 vector field on ~0 (which is assumed to be of

class C2) and 0 < C C(~2) or the boundary condition may be of the Diriehlet type:

B
k
u
k S u

K
(x )  = ~~~~~~~~~~~~~~ ~~~~ 

on

Let 
~~~

. and (1 < i < m) be C1(Q) fl C2(0) functions which satisfy, for all

u .  e C~ (c~) with 
~~~

. < u. <

L .cp . < f .(x ,t ,u , u ,...,u. ,p .,u . ,...,u ) in 0 ,
1 1 — 1 1 2 i—i i i+l m

L.4i . > f. (x,t,u ,u ,...,u. ,iji ,u u ) in 0 ,
(A) 1 1 — i 1 2 1—1 1 i+l in

B . P .  < g .(x,t ,u ,u u , ,~~.,u u ) on 30 ,
1 1 — 1 1 2 1—1 1 x-~-l m

~~~ > g.(x,t,u
1
,u
2 ~~~~~~~~~~~~~~~~~~ on 30 .

Then {(u ,u u )~~~. (x) < u . (x) < iJ. (x) y x e  0, 1 <  i < m} is an invariant set
1 2 in i i i — —

for the problem (DE)-(BC) .

-2-
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Application. Let us consider a system of equations which arise in the theory of

combustion (cf. [4], [111). For simplicity we restrict ourselves to the one dimensional

case:

-E/RTn — k n  =—net l x x
— 

-E/RT
- k~T - Qne

where T and n denote the temperature and concentration of the fuel and where

E,R,Q,k
1 

and k
2 

are constants (the calculations below can however still be carried

out if we for example allow k
1 

and k
2 

to depend on x). We assume the region of

• interest is x € [0,L] and let us assume fuel is fed in at the right end and heat is

• lost at the left end: we impose the boundary conditions

• n (O) = 0 n (L) g(n)

T (0)=8T 1 T (L)=O
• x x

where g(0) = 0 and g(z) > 0 whenever z > ~~~ where a0 
> 0 is some constant.

Suppose that we are given some initial conditions and that To = max T(x,0 ) ,

= max n(x,0) and that a = max~a0
,n0,k2BT~

/QL). We then claim that i- ic set

1 =  {(n,T ) I 0 < n < n 0, 
0 < T < ~~ }

is invar ian t  if we choose

= (T,B)~~
”r + TX Tx

2
/2L

where T = QaL/k. Let us verify that ~, satisfies the riqht inequalities ( •~c ( A ) ) ,

the inequalities for the other functions used in the definition of I being t r i v i a l l y

satisfied.

-k 2~
”(x) k

2
T/L Qa > Qn

0 
> Qne~~~~~

-
~~~~‘ (0 )  = T = - Bi~ ( O ) Y

• 31p(L)/3v i(i ’ (L) = I — I > o

Also we note that lJ)(x) > iji(0) = (T/ B)~~ ” 
~~

- 
T0 

and therefore we know that

(n( ,t),T(~ ,t)) C I for all t > 0

— 3—
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2. The Linear Elliptic Problem.

Let Lk . 1 < k < in, be linear second order uniformly e l l i ptic operators with

real coefficients acting on real valued functions of x = (x ,x, x ) in a bounded
• 1 s n

open set 0 C Rn .

L u  a —D .( a 13 ( x ) D . u + d i ( x ) u l  + b 1( x ) D . u + c ( x ) u
K 1 k  j k k 1 k

• where summation is, and subsequently wi l l  be , carried out over any index which occurs

both as a subscript and as a superscript within the same term . Nex t let B
k. 

1 < k < m ,

be first order boundary operators, of transversal order 1, acting on real valued

• functions defined on some subset of the boundary ~~~~. In th is  section we shal l

look at the weakly coupled linear system

(L
k + U

k
1
~~ 

— h~ (x)u .(x) = (x C il) , (1)

with boundary conditions

B
k
u
k
(x) e~~(x)u . (x) = ~~ (x) (x C 

~~~ 
(2)

Uk (x) = 0k (x) (x C r k ‘°1k~ 
‘ 

( 3 )

for all 1 < k < in. We will look at this problem from a variational point of view and

hence it will be necessary for us to write the operator in the form

B u = V ,[a’3(x)D u + d1u) + 0 (x)u + t (x)D uk 1 k  j k k k 1

where v = (v ,v ,...,v ) is the unit  outward normal on 0 and t = (t 1
,t
2 

t°)1 2  m k k k  k

is a tangential vector field on 3d : v . (x)t’(x) a 0 cc for all 1 < k a.

We will use ( , ) to denote the usual L2 (Y) inner product. When we take a

direct sum of m copies of L2(Y) we shall still use the m a e  symbol f or the inner

product on this direct stun, i.e. if F = ( f 1, f 2 ~~ 
and G = (q

1
,g
2
,...q ) are

members of 
i—l 

L
2
(Y) then (F .G)~ = 

~~~ 
j j

) y The norm is denoted by

I f  Y = H we shall di le t i ’  the subscript ~. Hence denotes the L
2 

C: ) norm ,

the L2 (~:) i nne r product (or the (1
2 (•~ ))

m 
norm and inner  product respectiv l~~

The norm on thi • Sobolev space Wm .~~ ( •)  (d e r i v a t i v e s  of order ~ m are in L~ ()) is

denoted by I f  p = 2 we alno us~ ‘ m 
to note the nnrr’ on H

m
(::) a (

-‘~ - 

. 

~
.•
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corresponding script letters will be used to denote rn-fold direct sums of function

• 
- 

spaces e.g. 111(0) = 

~~ 

111(0) , C1(~ ) = 

~~ 

C1(~) etc.

A formal integration by parts of the expression

f ~ 
[(L

x 
+ X ) u

k lvk
dx

H k=l

• with u.k
’s which satisfy (1)—(3) and V

k
’s which vanish on rk. leads to the equation

Ax (U1V) 
k=l 

{(a
~

3D .u.K
,D .vk

) + ( d
~ Uk , D .vk

)

+ (b
~

D . u.K~
v
k
) + ((c

k 
+ A)Uk,vk

) - (h
~
u .,vk

)

+ (a
kUk~

v
k
)
~ 

— (e
~
u .
~
v
k
)
A + (t

1D.Uk.vk
)
~~~

}

m
= Z ~~~~~~~~~~~ 

+ ~~~~~~~ }
k=l k

where U = (u ,u ,...,u ) and V (v ,v V ). If the coefficients of L and
1 2  in 1 2  in K

B are sufficiently well behaved then the bilinear form A is certainly well defined

on C1((2) x C1(0) . We will impose conditions which will allow to be extended to

a continuous U—coercive form on U x U for some subspace U of 11l (Q) .
n 2(I): (1 is a bounded open set in R whose boundary is of class C

This condition can be weakened to requiring that 30 be Lipschitz continuous in a

sense defined for example by Ne~as [20]. However it seems this would require us to

really handle the tangential derivatives in B
k 

rather than, as we shall be able to,

remove them from consideration by treating another but equivalent problem. The nature

of the work involved is then such that one might as well consider very general boundary

• operators, namely those which map ft1/2(3fl) into H~~.
/2
(3Q) (see e.g. [2]).

Let D(fl) be the C ([]) functions of compact support, and DU))’ the Schwartz

distributions. The non—negatively valued functions in D(0), denoted by D÷
(c2),

form a cone in D(H) . Let D~ (c2) ’ be the dual cone: f C D~ (Q) ’ i f  f f(c() > 0 for

all $E  D~ (0) . Consequently we have a partial order > on D(Q)’~ f g if f

—5—
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f - g € D+
(H)’. This partial order extends the usual partial order on L1 (0) functions:

f > g if f f(x) > g(x) a.e. Furthermore we can extend such partial orders to vectors

and matrices by saying F > G if the relationship is satisfied component—wise.

We use to denote the 0th order trace map, i.e. the extension of the map

1 — 1 . l,pu -
~ u~30 from C (0) into C (30) to a continuous map from W (0) onto

c L~ (30) for p > 1 ([1], [16], [17] or [18]).

We shall, on occasion, refer to the various Sobolev-Kondrasov imbedding results.

We mention the following [15, p. 43]:

Wr~P(H) C L
5(0) if > — 

~~~, pr < n, S > 1
s— p  n —

if pr > n, a < 1 , ~~~~~~~~~~

The second imbedding is a compact linear map, as will be the first inibedding provided

the inequality is strict.

We also need

(II): ~~~ € L (Q), d~ C ~~(0) , b~ C ~~(0) , ck 
€ ~~‘2 ( Q ) ,  D.d~ C ~~‘2 (0) ,

0 < h~ € L~
”2 (0), 0 < e~ € L~~(30) , 0 °k € L~ (3Q), t~ C ~~~~~~ ,

with suppy0
t~ C ~k

’ where p > n — 1, p > 1, q > n and q > 2. Also v .d~ > 0 on

3~*), and there exists a constant such that c
k 

— D . d~ > -u 1•

The above hypotheses are directly related to the Sobolev imbedding theorems. We also

require the operators L
K 

to be uniformly elliptic:

(III): There exists a positive constant V
0 

such that for every 1 < k < in and all

~ € we have

m 
2

a
k ~~~~~~~ 

~~
. 
Vo 

~l ~~

This condition can be weakened in order to treat certpf~i degenerate-elliptic problems

by methods described in (191.

*) i.e. f (d~D.~ + •Dd~)dx > 0 whenever 0 < 4i C 111(g).

—6— 
•

____ 
— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~ . 
• ___ 

• - 
~~~~~ 

W -

(IV): is an open subset of 311 such that the (n — 1)-dimensional Lebesgue measure

• of its boundary in 311 is zero.

Let W~’~~(H) (resp. H~ (H)) be the subspace of wk~P(Q) (resp. 11k(~ )) cH ained by

taking the closure of D(Q). The dual space of wk~P H) may be represented by

W (H), the collection of all Schwartz distributions of the form D.i,C’ + i[, with

and ij, in IF (H) where l/p* + 1/p = 1.

Before we proceed it should be noted that the usual Green ’s formula

(v,Dk
w) = _ (D

k
v
~
w) + (v

kY o
v .Y o

w) ag

• which holds for v,w C H~ (H), should be interpreted in the appropriate sense when

n = 1. Although the results in this paper apply as well to the one—dimensional case

we shall not take the trouble here to point out the various obvious notational modif i-

cations which need to be made.

For S C 3G let H~ (G) be the closure in H~ (G) of

{u € H1(G) Iu ( x )  = 0 a.e .  on an open neighborhood of 3G\S}

I’ With this notation H~,(G) = H~ (G). If 3G is sufficiently regular it can be shown

(e .g .  [101) that this space is also equal to {u € H1( H ) l y 0u a 0) .  We shall use

F H~~(H) to denote ~~

Our f irst  objective will be to simplify our problem somewhat. Consider the

bilinear functional AA . Using the Sobolev inequalities one easily shows that the

f i r s t  5 terms are continuous on H1 (H) x H1(H) (see e.g. [15]) .  Using the fact  that

if u € 11
1( H) then y

0
u € 11112 (3H) ~ L

(2n 2)/fl 2(311) (see e.g. [16) for the imbedding

theorem for fractional So...olev spaces) we also easily verify that the next two terms

in the expression for A X (U,
V) are continuous bilinear functionals on 111 (H)

The last term is also continuous. However we can use the following result of Fiorenza

[9] to remove it from consideration.

Theorem 1. Suppose (1 is a bounded open set in R
n, n > 3, whose boundary is of

class C2, and suppose t~ € Wi’~~(cl) . Then there exist functions

—7—
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ci’~~( — cz~ ’) € L~~(0) and functions y~ C ~~ ( 0) such that for all u , v € H 1(H )  we

• have 
. . .  .

(t~ D . u ,v) 
~~ 

= (a~
3D u ,D.v) + (‘y~ D u ,v)

i l n  l qAlthough in the proof Fiorenza assumes t
k 

€ L (12) fl W ‘ (H) ( D W ‘ ( H ) )  and hence

gets the y~ ’s in Ln (H ) ,  an examination of the proof easily reveals that assuming our

slightly more restrictive condition t~ € ~~~~~~~ does yield Y~ € ~~ (0)~ The proof

for the case n = 2 is especially easy: L~.t s denote the distance along 3H ,

measured in such a way that when mo j ing along the boundary in the direction of

increasing s, H lies to the left of 30. Let t be the unit tangent vector in

1 2the direction of increasing s, and let = t
k
t (t

k 
= (t

k~
t
k
)). The last term

in the expression for A
x

(U ,V) takes the form

k=l ~~ 
Bk Vk Uk t )d5 = 

k l  ~~ 
V ( B

k
v

k
) x V~~~d~cdy

= 
~ If  18~~~’~ x Vu ) + v

k
(VB x VUk ) l d xdy

k=l H

• = 

k~l ~ci [a~~ (Du .~)(D .:k
) + v y :U

k]dxdY 

.Of course this proof requires that we extend t • to a W (H) vector field. (Note

that the product of two members of 11l,q (0) is again in ~ l~~~ ( Q ) ) .  We know however

that t~ € C1 (30) C ~ll/~~~(30) and hence the extension is possible by the trace

theorem (16].

Using this theorem we can remove the last term in the expression (4) for A~ (U,V)

and replace ~~~ by a~~ + and b~ by b~ + Y~~. These new coeff ic ients  sa t i s fy

exactly the same hypotheses as the unaltered ones. Even the ellipticity constant V
0

is preserved. Without loss of generality we shall from now on assume t~ 0 for all

k and i.

Le~ na 2. For any e > 0 there exists a constant C ( c )  such that for all u C H1 (C2 )

( j )  f u2dS < C / DuI 2dx + C(€) / u2dx .
30 12 12

—8—
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Moreover there exist constants C
0 

> 0 and > 0, independent of A , such that

(ii) A
A

(U ,T J) > c0l j u II~ + ~~~ 
— 

~~~~~

i.e. A
A 

is JI~~(H )— coerc ive

proof: We shall use the following result due to Lions [201: If X C x C X are
a b c

Banach spaces with norms ‘a’11 “b ’11 “c 
respectively and if the f i r s t  inclusion is

compact linear and the second continuous linear, then for each £ > 0 there exists a

constant C(E) > 0 such that

iI X II b < C !IX II + C ( E ) I I x ~j v x €  :c

We now close 111(12) C L2(1l) with respect to the norm

- 

Iu l~
2 = u

2dS+ ~f u
2
dx 

1 2
and call this space H. Now we merely apply Lions’ result to H (H) C H C L (H).

3f course this proof can also be accomplished by the standard partition of unity

argument. For the proof of (ii) we note that the first term of A1 (U.U) satisfies

k=l ~ 
a
~~~

(D .Uk)(D.uk
)dx > 

~ k=l i l  
IiD lUk I~~

.

Hence it suf f ices  to show that each of the other terms is dominated , in absolute value ,

by a quantity of the form

+ C ( C ) ~~j U ~~~

where the ~ > 0 can be chosen arbitraril~’ smal l .  This is easily seen to be the case.

For example

~~~~~~~~~~~~~ < I I c D i u.K IL~+ ~~~~~~~~~

2 2 — 2 1 2  2
C + C t k O ,q ”h1~Jb o , 2q/ (q_ 2)

By the Sovolev-Ko ndrasov embedding theorem the ~mbedd ing H1(H ) ~ L2
~’~~~

2
~ ~~ is

• compact continuous. Hence we can again use Lions result to deduce that the above

quant i ty  is
~~~~~~~~~~ 

+ c 2
IId~ lj O 

54 11 vu k 11 2 
+ ~( E)~I~~Il 2 } < +

__________________________ _____________________________________________
_________ _______ 

j

~~~~~~~~~-=-~ ~j  
- 
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provided c is chosen sufficiently small. As another example let us take one of the

integrals over A
k
. 

p..

• l f  e~ u~ u~dS~ ~~
lle
~ ll Q p A llu jfl0 r 3 H ll Ukll Q r 3 H

where p > n - 1, r = 2p/(p — 1). This in turn is

~ 
cst.ll ull~~~~312 ~

• -

We again apply Lions result to 111(12) C X C L2 (H) where X is the closure of 111 ( 12)

with respect to the norm

JJ U I~ = !IYOUi JJ O r 3 H + Il U ll o

Si nce 11l ( ( 2) , C L 2 (1� ) is a compact embedding and since 111(H) -~ H~
’2(afl) C L

r (30)

is ~ composition of a continuous linear map y0 and a compact embedding (since

1 1 1/2
— > - —i- we can apply the Sobolev— Kondrasov results) we may conclude that

~f c,(u .u~dsl < cst~j u~ c ll u Il 1 
+ C ( c )  l u l l 0

At this point it will be convenient to introduce some abbreviated notation. If

U = (u ,u ,...,u ) € 111(0) then HIt = (h1u ,h1u.,...,h
1u.), EU = (eiu.,e

iu .,...,elu.).1 2 in 11 2 1  i n i  l i  2 i  m i

We also set F = (f
1
,f
2 

f), G = (g
1
,g
2
,...,g), e = (e 1, e2 em) ,

A = A x A x ... x A , r = r x r x ... x r and L and B will respectively
1 2 in 1 2 m

denote the operators (L
1
,L2

,.. .,L) and 
~~~~~~~~~~~~~ 

With this notation (l)-(3)

can be written as

( L +A - H )U F in H , (4)

(B — E)U=G on A ,  (5)

u = e  on V .  (6)

uefinition. For F € 111 (0) , (the dual space of 111(12)) and G e  H
_hh/2

(3H) (the dual

space of Hl’2 (12) = y
01!1 ( H ) )  and B € 11h (H) ‘~ L (H) we will define U to be a

generalized solution of ( 1 ) — ( 3 )  if U — BE 11~ (H) and A~ (U,V) = (F,V) + (G,V)A 
for

all V € 11~ (12 ) (or equivalently for all V € C (0) = { (v
1
,v2 v )  € C (H)~ v. = 0 4

on an open neighborhood of r . ,  1 < i < i n )) .  Of course every classical solution is a

—10—
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generalized solution and, for sufficiently large A , there exists at most one

generalized solution.

We shall need the following theorem of Stampacchia

- 
Theorem 3. Let A be a continuous bilinear functional on a real Hilbert space I

with inner product < , ) and let U C I be a closed convex subset. Suppose A is

strongly coercive on U — U, i.e. there is a positive constant c such that

A(y,y) > c(y,y ) for all y € U — U. Let

• U = {y € liz + cy € U for some c > 0)

Then for each f € Y there exists a unique element z € U such that

A(z,y) > ( f,y > for all y € U

- The proof of this theorem can be found in [22] for the case where A is strongly

coercive on all of Y. However, an examination of the proof shows that strong

- coerciveness on U - U suffices. The minor modifications needed in the proof were

• pointed out in [121.

• . 
We use K to denote the cone of non-negatively valued functions in

Consistent with our earlier notation, K will denote the cartesian product of in

copies of K.

We remark here that the following two lemmas, 4 and 5, are true even if we impose

no regularity conditions on 312 or A. These two lemmas corr espond to similar r esults

obtained by Staznpacchia [221. First we need another definition.

Defini t ion.  Let U be a subspace of H~ (12) , then U € 111(12) is called a U—subsolution

for (l)—(3) if AA
(U.V) < 0 for all V C U fl K.

- Lemma 4. If U and U
2 

are H~ (H)-subsolutions , A > ~~~~ 
~ 

as in Lemma 2, and

-

• W = max(U ,U ) ,  the component—wise maximum , then W is also a -~~~( S 2 ) — su b so l ut i o n .
t 1 2

Before we prove this lemma we need to make several observations whose proofs can

be found in [15 , pp. 50—541. If k is a constant then the function

Cu V k) (x) max(u(x),k) is a member of 11
1
(12) whenever u C H

1 (Y). Al so, if u u

in H
1
(S) then u V k ~ ii v k in 111(12). Moreover the distributional derivatives of

u V k satisfy

—11—
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W

• 0 if u(x) < k
D . ( u V k ) (x) =~~~ 

—

1 

~ D. u ( x )  if u(x) > k

But since U V V = U +  (v — u) V O E  H1(0) if u,ve 111(0), we see that

I D.u(x) if u(x) > v(x)
1• D . ( u V v) (x) = 1

~ D.v(x) if u(x) < v(x)

Of course everything is modulo sets of measure zero; in particular D~u = D.v a.e. on

the set where u v. Also analogous results hold if we replace u V v by

u A v a min(u,v).

Proof: Let U (ii € H
1
(0)iU < W  and U - W €  H~ (H) where < should be interpreted

as component-wise a.e. Clearly U - U C H~ (H) . For each ‘1’ C U we define

= (V € 11~ (C3 )~ T + LV € U for some c > 0)

We have the inclusions UT 
C 11~ (H) and -K CI H~ (H) C UT. Now let T be the unique

element in U such that Ax
(T,Z) > 0 for all Z C UT• This means that T must be

an H~ (H)—subsolution. Let ~ = max(U
1
,T). We note that there exists an element

V € H~ (H) such that T + W. There exists a sequence 
~~~ 

C !?(C2) such that for

each i and n there exists an open neighborhood N . of r . such that the 1

component of V~ vanishes on 
~~~~ 

and such that V~~-~ V in 111(0) From the above

remarks we see that max(V + W ,U
1
) — (V + W) converges to ‘~‘ — ‘I’ in 11

1
(0), but

also the .th component of max(V + W,U ) — (V + W) vanishes on N . . Therefore
n 1 n fl, 3_

$ — T € Fi~~(0)  and we have $ — ‘P € U
T, 

so that

— ‘Y) > 0 (4)

We also claim that

— ‘V) < A
A (Ul

,
~
t
~ 

— ‘P) (5)

To see this we write

A x
( $ _  U

1
, $ - 

k~1 
{-(h~ (~~. 

- u
l .
)
~~k 

- 

~~ 
- (e~~(~~. - ul.)~~ k 

- 

~k~ 3H~
j  j

which is indeed < 0 since ~ u1. and 
~ ~k 

while h
k 

and e
k 

are ~ 0.

Combining (4) and (5) we obtain

-12-
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Ax
(4) — ‘1’,’I’ — ‘V) < A A (ul,~ 

— T) < 0

since U
1 

is an H~ (Q)—subsolution and ‘~ - ‘P C  K 0 H~ (cC). Because A > we see

that 1’ = ‘P and hence U
1 

< ‘V. Similarly it follows that U
2 

< ‘P and consequently

W = ‘1’, an H~ (H)-subsolut ion.

Lenuna 5. If U is a generalized solution of (1)—(3) with A ‘ F > 0, G > 0

and 9 > 0 , then U > O .

Proof: Both -U and 0 are 11~ (H)-subso1utions and hence so i~ W = max(O,-U).

• But since W is also in K fl 11~ (H) we see that A
A (W,W) < 0 and therefore W = 0. •

Remark. If f € L
1

(H) and f > 0 a.e. then f C D (H) but the converse is not

generally true. However since B € A (H) one can easily show that ek € D
+(H)

implies ek > 0 a.e. by merely taking a sequence in D
+
(H) which converges in L1(H)

• to the characteristic function x of the set {xle k
(x)  < 0). Therefore (8

k~
x) = 0.

Theorem 6. Problem (1)—(3) has a unique generalized solution for each F €

G € H 1’~
2 (H) and 0 € 111(H) 0 L (H) provided A 

~ 
1
~0~

I Proof: This is a simple application of Theorem 3. Let U be the af fine space

1 0 + H~ (Q) and Y the Hilbert space H1(H). By the Riesz representation theorem

there exists a T € 111(H ) such that < T , U )  = (F , U) + (G ,U)
312 

for all U €

• where ( , > is the usual inner product on H1(H) extended in the obvious manner

- 1 -to the direct sum of such spaces. Hence, since U — U = 8
A~

12
~~’ 

therc x1~~ts a unique

• 
- U C  U such that

A A
(U ,V) > (T ,V )  Y V  € H~ (H)

- 
- 1 - -But since —V € 11

A~
12
~ 

we have in fact equality.

Using the Sobolev embedding theorem one finds that L~~
2 (c) C H1 (s i’ and

• • IP(30) C (y
0
01 (12))’ . This justifies the following definition. •

Definitions. Let H denote the space 11
1(12) ~~L (H) with norm = ~~~~ 2~~ ~~~~ =

and let G
A 

be the map from /‘2 ( Q )  x [1~
(A ) x H into Hh

(:~) which  associates with

each triple (F,G,9) the unique solution U to (1)—(3) (A ‘

~

Theorem 7. Suppose ~ > and U is a generalized solution to (1)- (3) with

~ ~ ~~~~~~~ G e  L~ (3H) and B e !Y1 (~ ) 0 L~~(~?) then U [ Cl .

— 13—
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Proof: In order to apply known results for single component equations we first consider

the case where H = 0 and E = 0. It will suffice to show that the solution is bounded

from above. Let ii > ~~~~ and N = (.~~....,i.’), then U’ = U - M satisfies

(L + A )U’ = F
1 

€ L~I~
12

(H) in H

BU’ < G1 
€ L~ (aH) on A

U’ = O - M c 0  on r

where F
1 

= (f
11
,f
12 ~lm~ 

with f1. = f~ + gD.d~ — ijc . — pA and

= (g
1
.,g

12,...,g1
) with = - 

~~~~~~ 
Applying lemma 5 we see that U’ < V

where

(L + A)V = F
2 in H

(A)
B V = G

2 
on 30 ,

where F
2 

(reap. C
2
) consists of the absolute values of the components of F

1 
(reap.

G
1
). Let V

1 
be the generalized solution of

(L + A)V
1 

= F
2 

€

(B)
3V /3N = O  on 3121

where 3/3N = v .(a~~D. + d~). We can apply a result of Stampacchia [21] which states

that the solution u of

(L
k 

+ A)u = f € W 1’~~(H)

3u/3N=O on 30

will be in L’~(H) if > — n 1 (p = is allowed, setting l/ 0). By the

Sobolev embedding theorem C L~~
”2
~ where ~ 

def a(a — 1) ~~. Therefore

L~ ’2 ~ ~~~~~~ and , since q~~ — n 1 
< 0 we have V

1 
e L U]). Recalling that > 0

and noting V > 0 we see that V — V
1 

< V
2 

where

(L + A)V = 0
2 (C)

G
2 

€ L~ (aH)

Another regularity result, due to Murthy and Stampacchia [191 tells us that V2 
€ L 121)

since p > n — 1 (the work of Murthy and Stampacchia deals with a more complicated

—14—
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problem namely certain degenerate elliptic problems. Also the theorem we need

[19, p. 61] contains some minor, but confusing, errors. For these reasons we have

included a proof of this result in an appendix). The regularity results whi h we used

were proven for single component problems. When one includes coupling terms —HU and

-EU on the right hand side of (A) they are no longer a priori in ~~ ‘2(11) and

respectively (unless n < 3). Although we will not take this route, we do note that

one can treat (B), with coupling -HU, by bootstrapping, showing that if U €

p < q/2 , then U C L~~~ (H) for some 0 < £ < aJ2 — p etc. The proof of the regularity

I-
result for (C) is relatively simple and can be easily extended to the case where we

} introduce a coupling term -EU. However to use this approach to deal with the case

where we have both coupling terms present is rather lengthy (unless n < 3). Therefore,

we will use a different approach. Let n — 1 < p ’ < p and n < q’ < q and r so

large that r 1 
+ p

1 
< (p ’) 1 and r

1 
+ (q/2) 1 

< (q’/2) ’. Let G be the map from

~~ /2(~ ) L~ ( 3 I 1 )  into H defined by

(L + A)U (F,G) = F C ~~~‘/2 ( 12) in H

BG (F , G) = G € (H )  on 312

One easily sees that C is a closed linear operator and hence continuous by the closed

graph theorem. We claim the map C 
0 

P 
0 

~ defined by the diagram below is a compact

continuous linear map from H into itself:

U € H -• (U ,y
0U) € Lr (H) X Lr (312) (HU ,Eu) € ~~~/2(Q) x (~ c ) v € H

To see this we note that by Holder’s inequality P is bounded linear while I is

• obviously continuous . But I is also compact for if {u) is bounded there must exist

a subsequence ( U )  such that both U and y0
U converge in J~2(~ ) and

If U ~ U then a fortiori y u -
~ 
y U. It may furthermore be assumed , without loss

n . O n .  0

of generality that U -
~ U a.e. in H and -

~ y0
U a.e. in 312. But we also have

• things bounded a.e. and therefore, applying the dominated convergence theorem, we have

U • U in LrW) and y U • y U in Lr(30) We next consider, in /!, the equation
n. O n .  0

-
• u — 0 P 0 TU = G ( F

1
,G

1
) . (D)

• 
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According to the Fredholm theory this equation has a solution in H if

Ker (id. + G ° P 1) is trivial. But if U
0 

were in the kernel then one easily

sees that (L + A — H)1i~ = 0 and (B — E)U0 
= 0 with A > p

0. By lemma 5 U
0 

= 0.

Therefore (B) has a solution U € H which is also a solution of (1)—(3) . By uniqueness

we are done. U

Theorem 8. G
~ 
: 1! + H is a continuous map which is monotone in the sense that F

1 
< F

2

a.e., G
1 

< G2 a.e. and 8
~ 

< a.e. implies GA (Fl.Gl~
B
l
) 

~~. ~~
(
~
‘
1’~~1

,
~ 1
) a.e.

Proof: The monotonicity is of course a direct consequence of linearity and lemma 5.

Let U. G
A
(F.,G..e), i = 1,2, then U

1 
— U

2 
C H~ (H) and hence, letting

£ = min(€
0

,A —

£ (iU1~ 
u2 111 < A

A
(U
l 

— U
2
,U
1 

- U2)

(F
1 

— F2~
U1 

— U
2
)
0 

+ (C
1 

— G
2
,y
0U1 

— y
0U2

)30 
<

cst.{11F1— F2)1 0 q/2~ 
jIG1 

— G
2 IIO A }11U 1 

— u2 i1 1 ‘

where we used the Sobolev and HOlder inequalities. Hence for fixed ~~ must be a •

closed linear operator. Applying the closed graph theorem we have continuity with

respect to (F,G). To conclude the proof it suffices to show that GA is continuous

with respect to 0 for F 0 and G a 0. Again this reduces to showing that the

graph {(O,G
~
(o,o,O)} is closed. To see this suppose e. -

~ 0 and 
~~~~~~~~~ 

-
~ W

then, extending standard arguments (see e.g. [21) to the multi—component case (cf.

equation (4) it can be shown that

O = J (L + A — H)U.W dx = AA
(U.,W) — f (3U./3N)W dS

12 r

where 3/3N : 111(0) ~ 11
h/2 (30) is a continuous linear map corresponding to

(v
i
(a
~~
D
j 

+ d~)}~~1 
(Since we will never use continuity with respect to we omit

the details). Therefore, for A > p we have -
ci

- 
EO IIU i II~ < A~~(U

1
,U~ ) = f (3U ./3N)y0

0.dS < cst. x i1u111 11191 ‘1

~1
-16-
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We might point out that one can show, using the methods used early in the proof of the

• previous theorem, that the graph is closed in the A 2 topology: )U
~

) ) < cst. x lI ~ ) l 2 1 12

Either of these inequalities can be used, in conjunction with the closed graph theorem

• or these inequalities may be used together without resorting to the closed graph

theorem.

It will be convenient to introduce the following notation:

Definition. = max(p
0
,p
1
)

I
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3. The Nonlinear Elliptic Problem.

Throughout the rest of the paper we will assume that hypotheses (I)— (IV) are

satisfied. Let us consider

• (L
k 

+ A)u
k 

- h~u. = f
k
(x
~
U) in 12 (6)

B
k
u
k 

- e~u. = g
k
(x,U) on A

k 
(7)

uk
O
k ~~ rk (8)

Using the more concise notation we define the formal nonlinear operator N by defining

N (U) = V if V is a genralized solution of

(L + A)v - HV = F(x ,U) in H

By- EV G(x,U) on A ,

on r .

Then solving (6)—Ca) is tantamount to finding a fixed point for N . We shall be inter-

ested in the case where F and G are dominated by affine functions. This is a reason—

able assumption for many practical applications. For one thing it means that positive

solutions to the associated parabolic equations (i.e. reaction-diffusion equations) grow

no faster than exponentially, thus ensuring existence of a global solution whenever

local solutions exist. In other words we want to assume that there exist a matrix

H
F
(x) whose entries are all positive and some vector D(x) such that

F(x,U) < H~.(x)U + DCX) . (9)

Obviously, due to the presence of H on the left side of our equations we may as well

subtract HFU on both sides, therefore assuming that F, and similarly G, are

bounded from above for all U. As a specific example let us consider the case where

one models the processes of chemical reactor kinetics or of flame propagation (see [41

for the equations). In both these cases one of the components is temperature ~nd t)~e

boundary condition is obtained from heat flux consideration at the boundary. If a

significant ammunt of heat is lost by radiation one expects a boundary condition of

the form

K ~~~~ = g(u) a m + Bu — y1
(u4 — u~) on 30 (10)

— 18—
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where u > U
0
, u0 being the temperature of the exterior region, a > 0 , and is a

positive constant obtained as the product of the emissivity of the containei s surface

• and the Stefan—Bo ltzmann constant [3] ,  and K is the heat conductivity. If on the

other hand one assumes natural convection at the boundary one obtains [3]

3u 5/4K j-= g(u) a —y 2
(u — u

0
) , (11)

whe re > 0 and u > u
0
. In the interval 0 < u < u

0
, the remaining physica l ly

meaningful  range of the temperatures, one might have some other boundary condition which

matches at u
0
. In any case we notice that in both cases g(u) is dominated by a

• - linear function for u > 0. For u < 0 we can apparently define g to be whatever

is convenient in order to satisfy mathematical hypotheses. That this causes no problems

follows from a result which we shall prove which says that the existence theorem stated

below is still  valid even if the linear domination hypothesis fails in some region,

provided some other condition holds. In the above example this condition amounts to

observing that if we set ~i 0 we get

When the corresponding partial differential equation is also nonhomogeneous we must

require a similar inequality there. For example if we are dealing with a one-component

ease Lu = f(u), we also require Lu < f(u). Following standard terminology one may

call ~ a sub—solution, a term which we however have already used. In addi tion to

domination by an affine map we also must require some reasonable local behavior.

Definition. Let (S ,p) be a measure space and T a function mappinq , ~<
m 

~~~
. 

~

subset thereof , into R
k. Then T is said to satisfy the Caratheodory I- ~ - T I 1 t t  ion i~

T(x ,U) is measurable in x for each fixed U C Rn and is con t i nuous  in U fo r  -o~~t

all x in S.

Definition. Let S C S x R
n then P (~ ) denotes the class of all f u n

r

T : • Rm which satisfy the Caratheodory condition and also satisfy:

i) There exists a D C L ’(S) such that T(x,U) ~ DCX) for all (x ,U ) - 
-
.

- 

- 

— 19—
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ii) For each real number v there exists a T
~ 

€ A r(S) such that F(X ,U) > T (x)

for all (x ,U) € S with U < (v ,v,.. .,v)

A simple example of a map P € P
r

(c2 x R
n
) is one which is continuous, nonincreasing

and bounded from above. Another example is a continuous function which bounded. In

particular if S is bounded and closed and T continuous on S then T € F (S) for

for any 0 < r < . We introduce another hypothesis which will be needed for almost

all subsequent results.

CV): There exist numbers 
~1 

> 0, > 0, such that for all (x,U), (x,V)

(F(x,U) — F(x,V))~~(U — V) < y 1lu — v) 2

(G (x,U) - G(x,V))~~(U - V) < y 2 IU - v 1 2

using the notation of lemma 2 (i) and (ii) we define y = + y
2C

Theorem 9. Suppose ( I ) — ( I V ) are satisfied, Be H~ (H) 0 L ( 1 2 ) ,  F € F~ ,2(H 
)C R

m
) ,

G € F (312 x Rn) and A > j. Then (6)—(8) has a generalized solution. If CV ) is also

satisfied then this solution is unique for A > + y .

Proof: Let D
F 

€ L~~
2 (H) and D

G 
€ L~~C30) such that F(x,U) < D~,(x) and

G(x,U) < D
G
(x) for all U C Rn. By Theorem 7 we know there exists a number v > 0

such that N (v ,v ,...,v) > G
A
(Dp,DG~

B). Let

P= {U € 112 (H))G (F ,G ,0) < U < N )-A v v — — v

where F (x ,U) > F ( x )  € L”2 (H) and G(x,U) > G ( x )  € L~~(3c) ) for all U < N .  Now

~ is mapped into itself by N , for if U e ~ then

N(rj) = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~

and

N( u)  > C (F ,G ,B)

.t remains to prove that N is compact continuous (in the H1(c2)—topology) because

then the result follows from Schauder ’s fixed point theorem. Suppose (U .)  is a

sequence in 
~ 

which is bounded with respect to the norm II j~~ in 111(0). We can ,

by Rellich’s lenina, find a subsequence {U., } which converges in L
2
(cl). Also, since

• L
2
(30) is compact continuous, we may assume y

0U~ , converges in
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(a fortiori to 10U where U is the L2 (12) limit of the sequence U , 1 ) .

We have (lemma 2)

C L I N W . ,  - N W . ’)  2 < A ( N W. , ) - N(U . ) ,N(U. - - /(U . ))
0 i j 1 — A  i j i

= f (F (x,U ., ) - FCx ,U .,))~~(N(U. ) - N(U .,))dx
• 12 3 i 3

+ f (G(x,U ,) - G (x ,U . , ) )~~y (N W .  ) - N (u . , ) ) d S
311 :i 0 i

By Theorem 7 N (s) is bounded in the norm II II ~. 2 11~ 
II lI ~ = ~ 

of

H J? (H) 0 A (H). Therefore there exists a constant c such that

r011N(U . ) — N (U~~) j~~~
< c{IIF (x ,U ., ) — F(x ,U ., ) 11 0 1 1 2 + jG(x ,U ., ) - G (x.U~~) 11 0 1 3 1 2 ) (12)

Since R i-s a bounded set in 1 (0) the Nemytskii operator F takes ~ into

Similarly the image of i~~(~ ) under the Nemytskii operator G is bounded in L~~ (aH).

But this means [14, p.22] that these operators,being defined through functions satisfying

the Caratheodory condition, are continuous on R and y0
(~ ) in their respective L 1-

topologies. Hence, by (12), {N(u .,)} is a Cauchy sequence in H
1
(H). We have inci-

dentally shown that (12) also implies continuity. To prove uniqueness we suppose that

N(U) = U and N (V) = V, then using lemma 2 we get

c0ll U — vII~ + (A — U0))IU— V Ij~ < A~ (U — V,U — V)

= A
A
(N(U) - N( V ) ,U - V) < y

1jj U-V )l~ + 
~~ 

c0 I I u - v I l~
+ Y2

C 0/2Y2
) vil O 

= 
~~ 

£~11~~~ 11~ + ~Il~~~ l l~
Therefore, if )~ > + y then U = V.

Of course the above theorem is also valid if the conditions on F and G are

replaced by —F C 

~q/2~
0 R )  and -GE F~ (3H x Rn ) .  The above result  as well  as

the next theorem generalize similar results obtained in (12] for one—component

equa tions .

Theorem 10. Suppose (I) — (IV) are satisfied , *~ € H 1 (0)  0 L (0) , F and G sa t i s fy

the Caratheod~’ry condition on H x R~ and 3H x R
m 

respectively, and A ~ ~~ . Suppose

-21-
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there exist nonincreasing functions ~ and ~ from R
1 

into itself such that for

all k > k
0

> 0

lim sup k4 (k~P(s))/s < 1 (13 )

S -
~~~~

=

and for each 1 < i < m we have the growth conditions 

u),g .(x,u
1
,u
2 

u )  < ~~(s )  if u . > S

• f.(x ,u
1
,u
2
,...,u),g.(x,u ,u ,...,u )  > i~ ( s )  if U . < a

Then (6)—CS) has a generalized solution. If CV ) is also satisfied and A > p
0 + y then

the solution is unique.
Y l

-• 
Remark. Simple examples of functions satisfying (13) are ~‘(s) = -a — b max(0,s) and

= a + b max (0,-s) where a,b,y
1 

and are positive constants satisfying

1.

Proof: Let N
1 

= (1,1 1) < Rn and k
1 

= 1 1 1
, N 1, 1 ) 1 1 + k0 and let

- • P = {U € H1(Q)~~k1~
J (y) < u . < y}

where y > 0 is chosen so large that k
1~~

(k
1
(~i(y))/y < 1. Then N

maps P into itself. To see this we may assume without loss of generality that

4 (O) = —q (0) 1.

NW) = 
~A , , c ,W,e) I

I ~(y)~ A (N l
,N

l,l0I) 
k
1~~

(y ) N~ .

Also

NW) < 
~~~~~~~~~~~~~~~~~~~~~~~ 

e l)  < ~(k1~~
(y))k

1
N
1 yN

1
.

As in the proof of theorem 9 we have all the necessary components to justify the use of

Schauders fixed point theorem. Uniqueness follows from the sams argument that was used

in the proof of the previous theorem . • -
~~~

We conclude this section with a theorem on invariant sets which constitutes the

crucial ingredient in the proof of the invariant set theorem for the reaction—diffusion

equations discussed in the next section. Instead of viewing the result as an invariant t
set theorem one might, maybe more appropriately so, regard it is a nonlinear

-22-
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generalizationa l lemma 5, i.e. as a sort of maximum pr inc ip le. Wi th thi s  in mind one

would expect to need the following conditions: i) the . th component of F(x ,U) + FlU

is nondecreasing in u . for each j ~ i (corresponding to the hypothesis P 0 in

lemma 5) and ii) CV ) is satisfied (corresponding to the coerciveness requirement of

A
~
. Also in order to be able to treat nonlinearities of the type occurring in (10) and

(11) we certainly want to allow f(x ,U) to decrease ‘rapidly’ with respect to U ..

This last requirement has tended to make our proof rather lengthy. Before we proceed

we must introduce some more notation.

Definitions. (i) F(x,U) = F(x,U) + H(x)U, F = (f , f f
1 2  in

~ (x,U) = G (x,U) + E ( x ) U , G = (g 1,g 2 
g )

(ii) We use + (resp. — )  to also denote the extended real valued function

x -
~ + (resp. x • — ) .  For convenience we define (L. + A) (+) = + and B . ( +oo ) =

(iii) ~ = (~ ~ , ...,~~ ) where ~~~. C H1 (H) fl LW )  ~ C (Q) fo: 1 i < d  and 

—

= —= for i > 

~~ 2 

= 

rn 

~~) where 
~~~

. C H1(Q) 0 L W )  fl CC. ) f:r

6

~~~

i < Z  and p . +~~ for i < 6  or i > t .  Also we assume the indexinq is -~uch

that 6 < d + 1. In other words the indices 1 < i < 6 are those for w 1 i ~-h ~ - is
1.

finite valued and (. is + , the indices 6 < i < d are those for which L~th1 — — 1

and ~~ . are finite valued, the indices d + 1 < i < I are those for which is
1 — — 1

—= but ~i. is finite valued and the indices 9. < I < m are those fo r  W I I h - I I  both

= — and = + . We also use [~ ,1’] to denote {u € H~~ (H ) I l  ~ U <

(iv)  = ((x ,U) C 11 x RmI6I (X) < Ii < ‘(‘Cx))

= ((x,u) € 312 x Rm I Y
0

I ( x )  < U <

Cv) For any U € Hi (Il), U~ = 
~~l

’
~~2 ~ d”~d+1

’”
~ 
,u )  and

= (u
1
,u
2 

u6 1 ,
~F6

,lj
6+1

, .. ., i(’9.
,u

9.+1 
u). That is to say U ,~ is oht n~ned from

~ 
by replacing all components which are —= by corresponding compon~ nt from U and

similarly [J~ is obtained from I by replacing components which are So by corres-

ponding components from U.

~TI - 
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Theorem 11. Suppose that (I)-(V) are satisfied and A > p + y ,  €) € H~ (’~) ~

F E  F (S1) G €  F (33~
P
) and that f.(x,u ,u u ) and ~ . (x ,u ,u ,... , u ) areaj2 ‘1’ p ‘~ 1 1 2  m 1 1 2  m

• nondecreasing in u . for all 1 < j  < £ with j  ~ i. Suppose ‘I’ < B - I and that

for all U €

(L + A ) ~ < HiJ~ + F(x ,U,~,) and CL + A ) I  I + F(x,U
1
) in 0

‘3’ I
B~ < E1J,~, + G(x,U~,) and B’Y 

~~ 
EU + G(x,U on A

Then (6)—C8) has a unique generalized so1uti~n U €  [~~,I1

We shall postpone the proof until the end of this section. This theorem can be

viewed as an invariant set theorem in the following way. For A sufficiently large

let TA : L’
~
”2 (H) x L~~(3H) x 11 • 110 C(H) be the operator defined by T1 (F

0
,G
0

,B
0
) = v

where V is the unique solution of

(L + A — I -C )V - F(x ,V) = F
0 

in H

(B - E) V  - G(x,V) = G
0 

on A

-• v = B
0 

on F .

The fact that V C C((1) follows from known regularity results [15, p. 2011. Suppose

F € F
q/2 W x R

n) ,  G € P (3(2 S Rn) and that the inequalities CIQ) are satisfied for

all U € [~~, ‘V ] .  Then for fixed B € [I~’,’3J ], and p > 0 the map

W T~÷
(pW ,0,E3

3~
) leaves [‘l’,’P] invariant. The proof of this follows immediately

from the inequalities (L + A + p)’l’ < HUG, + F (x,U~) + :1; and (L + A + i i) I  > FlU
1 

+

FCx ,U
1
) + pW. It is also easy to prove the following gereralization of lemma 5.

Corollary 12. Suppose (I)— (V) are satisfied, A > p + ‘~~, ~~~ H~~(0 )  ~ L (12) ,

F E  F (H x R~), G C F (312 x Rm) and that for all 1 < I 9. f . (x ,u ,u u )q/2 P — — i 1 2  m

and ~~(x,u1
,u
2 u )  are nondecreasing in u . for all  j ~ i. Then T

\ 
is an

order preserving map i.e. if

F
1 

> F
0
, G

1 I G0 and 
~1 
10o then T

A
(F
l
,G

l
,B

l
) I TA

(F Q ,G o
,B
o
) .

To prove this let ~ = T
A
(F
~~

G , B )  and U = T
A
(F ,G

l~
B
l
) and apply the theorem.

In Corollary 12 we have a lot of monotonicity available. At the other extreme we

may delete the monotonicity requirement entirely from the statement of Theorem 11

provided we replace (IQ) the requirement that for all U € [4,I]

—24—
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+ 
~~ k 

< h ~~u . + f
k
(X ,ul~

U
2 

.Uk_l~~k~
uk+l . U

n
) (1 < k  < d )

e~ u. + g~~(x~ u1~ u 2 “k - l ’~ k ’°k+l ’ ” ’ ’~m 3 (1 k d)

L
k

~

k 
+ A

~k I 
h~ u. + 

~~~~~~~~~~~~~~~~~~~~~~~~~ 
u )  (6 ~ k < I)

I + ~~~~~~~~ .,uk l
,
~
J)
k~

uk+1~~
.. 

~‘°m~ 
(6 k <

yielding a result akin to Theorem 8 in [131. Since we only assume that the inequalities

are satisfied for U C [‘1 ,1], instead of for all U € 111(11) this result is not just a

repeated application of the theorem. We will return to this point with a remark at the

en~ of this section.

• The following lemma will be necessary for the proof of Theorem 11.

• Lemma 13. Suppose u € H~~(H ) 0 L ( 11) 0 C(H) and that G {x € Hju(x) > 0) and

R 0 S 0 112. Then the restriction of u to G is a member of H~ (G).

Proof: Let

E
k 

= {x C Oil/k < u (x ) I 2/k)

[ then there must exist a subsequence {k(n)) of positive integers such that

u r n  m(E
k~~~

) = 0, where a is the uSual Lebesque measure on 12. We de f ine

~~~(x) = max[0 ,mi n (l ,2 — k ( n ) ( u ( x ) f  I

a function which is a member of H
1
(1l) and is equal to 0 whenever u(x) j I 2/k(n)

md - - -~ua1 to I when u (x) I < l/k (n). Moreover

-sgn (u(x))k(n)D.u(x) if x e  E
D _
~ Cx) = 

1 k n
1 0  0 if x E H \ E

k(n)

cn~~~- a uily verities that D
i~ n

U UD
i~ n 

+ E D i th We first show that E
n

ul • 0 in

Sn 
= {x C 12~ I u ( x ) I  < 2/k(n)}

WP have

f (~, u)
2
dx ~ 

~ ~~~~~ 
4m(12) /k(n)2

n

.

~~~~~~ 
. 
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while

5 (D .~~ u)~ dX < 2 f ( ( D .E )
2
u
2 

+ (D .u)
2
E
2]dx <

2 f k(n)
2 (D .u) 2u

2
dx + 2 f CD .u)

2
dx <

k(n) n

8 f (D .u)
2
dx + 2 f (D .u)

2
dx

E 1 1
k ( n ) n

We note that since mUl ) < = the last term tends to 2 1 (D u) 2
dx where S = u 1({0}).

But by the remarks made just before the proof of lemma 4 it follows that this integral

is zero. The next to last term tends to zero because m (E ) • 0. There exists ak(n)

function J : (0,”) -o (0 ,”‘) such that

max f (D.u)
2dx < r whenever m h j ) < J (t )

l-(i<n a

Since u € H~~(H) there exists a sequence {u k  C H~ (0) such that for each positive

integer n , the re exists an open neighborhood Nn of 212\S such that u vanishes

on N .  We may assume without loss of generality that there exists a positive number

K such that IUn
CX ) — uCx) I < K  a.e. for n = 1,2 and that u(x) - u (x)l<l/k (n)

except on a set a of measure less than J(1/k(n)3). Clearly (1 — 1 )u  , restricted

to G, is a member of H1 (G) which vanishes on a neighborhood of 3G\S. We observe

that

u — (1 — ~ )u = —E Cu — u ) + Cu — u ) + ~ u
n n n n n n

where the last two terms tend to zero in H
1
(ll). Obviously E0

(u — u )  tends to zero

in the L
2
CH) topology so that we only need to examine convergence of its derivatives.

f {D.[~~~(u - u )fl
2dx f 2(D.~~~)

2(u - u ) 2
dx + f 2E

2 (D (u - u)]2dx
12 Ek ( )  --

f 2(D.u)
2dx + f 2k(n)

2
1D . ul

2
K
2dx + 2 i l u — u l I ~Ek ( ) f l ( H \ a )  Ek ( ) Oo

J 2(D .u)
2
dx + 2K2/k(n) + 2 1 1 u — u  II ~ 

•~~ 0 as n -. .

k(n)
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Remark. In the proof of Theorem 11 we will use the following fact. Suppose we al ter

E and H by setting certain entries equal to zero. This changes the quaJr~ i .

functional A
A

(U ,U) to a new one, A~~(U ,U). Let 0* = (!ui , !u j , . . . , i u l ) ,  then

A~~(U, U) 
~ 

A~ (U*,U*) I AA
(U* ,U*)

I C~lU*~~ - ~~~~~~~~ 
= C I 0 lI ~ -

Hence all the results which we have proven are still true, for  the same values of ~~,

for the problem obtained by set t ing one or more ef entr ies  h~ and e~ equal to zero.

Proof of Theorem 11: We will use u V v to denote the function x • max (u(x),v (x))
and if U = Cu ,u u ) and V = Cv ,v v ) then1 2  m 1 2  m

— U V V = Cu V v ,u V v ,...,u V V 1. We similarly define the greatest lower bounis1 1 2  2 m m

u A v and U A V. Next we would like to introduce a notation which can be use l to

denote certain matrices obtained from H and E by replacing one- or more columns by

columns of zeros. If M = (rn .) is an m X m matrix then the matrix C, ,rl (Ek a )

is the matrix defined by

f m . if J c < j < r ,[k,rj 
= 

— —

13 0 otherwise

- • Let s I 0 be a member of H~ (H) 0 L (H)  which we shall  chooae le” - ° . ‘~- -x ’ ~~- k~f~~rie

F
0 
: H x R

m • Rin arid G0 : 312 x RB 
~ Rm by

F
0
(x,U) = F(x,(U V ~) ~ I) + 

[l , ó_ l I H ( x ) ( W V ~) A 5) +

((U V ~i) A I)  + 
(d+l

~~
t ] H (  ) ( ( U  A ‘(I) — 1))

and similarly

G0Cx ,U) = G(x , (U V ~) A I) + 
Fl
~
6_lI

E(x) ((U V ~) 
A 5) +

A 
~ + 

[d+l
~

il E~~~~( C U  A I) - U)

Let ~ = max Il~i Il 0 = H 
and 4* = max 

‘~~i ” O,=,H~ 
We note that the fir t ts:rI’i

l<i<d

appearing on the right hand side of the definition of F0 
is a member of F ,.,(

The second term is <j-
~S and , for U < (v , v , . . ., C ) ,  where v is a r-~ i1 num!-- r , it  is

bounded from below by _H(x) C~ *,~~* C [q/2 () I i C f l c C  th se-co ld t- -~mn I a  C

-
‘1

—27—
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member of ~ < ~~~~~~~ The third term also belongs to F ( () 0 M
W ) because : tq/2 q/2

is bounded from above by H(x) (q, * , Ip* , . . . ,~ *) € LOIJ2W) and from below by

_H(x)(~~*~ p *,...~~p *) € ~~/2 (12)~ Finally the last term is < 0  and , for U (~ 
- -1

is bounded from below by H((O,0 0) A (-
~
., - )~*,

_
~j - ~~~~~~~~~~~~~~~~~~~~ , “ ) ) .  Hence

€ F~,2W 
S R

B
). Similarly we have G

0 
€ F (~~ 

x R
n
). Therefore we may apply

Theorem 9, which says that we have a (generalized) solution U
0 

to the problem

CL + A)U
0 

— 
(d+l ,m] HU = F

0
(x,U0

) in H

(d+1 mlBU
0 
- EU0 

= G
0
(x ,U0

) on A

0
0

= 0  on r

Let 0 < F € ~q/2 (12) be an upper bound for the sum of the first, th i r d  and four th terms

in the definition of F
0
. Similarly 0 < G € LP C I H )  is an upper bound for the sum of

the f irst, third and fourth terms in the definition of G~. Let S be the solution of

CL + A)S - MS = F + 
[A , d)

HS in H

BS — ES = G + 
[&.dl ES on A

on r a
Applying lemma 5 to

CL + A) (S — U
o
) — 

[d+l~ lnl f l ( 5  — U0
) 
~ 
0 in H - I

B(S — u
o
) — 

[d+l~ml (S — U~ ) 1 0 on A

S — U 0 1° on F

we get S 1 U0~ 
But this means that

(L + A)U
0 

< ~ (x, (U 0 
V ~‘)  A ‘3’) in 12

BU
0 

< ~ (x, (0
0 

V 
~

) A ‘3’) on A ‘l
U = 0  on F
0 -~~

Let 6, = iJ - u . . For each 1 < i < m
1 1 01 — — - 3

CL . + A)i) , > °f C x ,(U V ~ ) ‘3’ ) in 12 - -
1 1 1  0 L

B’~. > g. Cx , (U V 
~) ) on A .

1~~~~~1 0 1

(I > 9 on 1’.
1 1  1

—2 9—
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Let = {xIu Ok
(x) > 

k Cx)). 
We claim that Gk 

= ~~ Suppose this  were not the

situation. We can h e -  6 A 0 is a member of H~ ( 11) .  To see this  we f i r s t  observe

that since uOk 0
k 

C Fl~~~(Q) there exists a sequence {v.) H
1 
(H) such that

v~ UOk 
— 8

k 
in 11

1
(11) end such that v~ = 0 on a neig1borhocd of 1’

k~ 
But then

— Cv . + °k~
-
~ 

A 0 * 6 A 0 in 13
1 (H) as j + , which implies hat

6k 
A 0 € 

~k 
Applyi ng the lemma € H~~~(G) where 9

’K 
= A

k 
(I 

~lG. Therefore,

(L
k 

+ A ) 6
k I fkCx ,00l 

V 
~ l 

U
061 

V ~ 6 1
, tIJ 6

, . .., I))
9.

, U0 9 . 1  u0
)

— 1
k~~~

,’
~Ol ~ 

~ l 
A ‘(1

,...,u09. 
V p~ A tJ 9.

,u
09.,41 

u
0
) 10 in G

k

B
k
6
k I ~~(x .uQ1 

V ~~~~~~~~~~~~~~~~~~ V 
~6~ l~*6 ~9.

,u
0~~1 u0

)

— g~ (x ,001 
V A ~1

,...,u09. 
V A t)

9.
,u09.~1 

u0
) 10 on

k 
= 0 on

~-here we used the monotonicity and the fact that (uok 
V 
~~~ 

“ 

~k 
0 

~ k 
on 1. Actual ly

some care must be taken to verify that the boundary condition on R.~ is truly satisfied

for the problem on G. To prove this we f i r s t  show that if u H~~ (G) then u € H
~k

(H)

where we define U simply as

— f oCx ) if x C G
u (x) =~~

0 if x % G

In order to do this we may, without loss of generality, assume that u(x) = C’ on a

neighborhood N of 3G\R.
K
. Let v € 0(12), and define v to be a function in .1(H)

which agrees with v on i~upp u 0 supp v end such that supp v C G. This is possible

cince supp u fl supp v and 3G d is jo in t  compact sets. Now

f uD.vdx = f uD . vdx = - f (D u)vdx
HG G G

Hence, for each i, D. u(x) equals D ,u (x) on 12 and is 0 outside G, i .e.

D
1
u € L

2
(O ) .  Moreover = 0 on a neighborhood of 3Q\~~ , namely \-~upr u. Now ,

4 since 6
k 

is def ined  sn all of 11 and satisfies B
k
ôk 

B
k

lIJ k 
- B

k
u

O 
on 6

k ’ ( in

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~ - - ~~~~~ -
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the generalized sense via A
A

) it follows that the boundary condi tion is s a t i s f i ed en

i.e. via the bilinear functional A
A 

def ined  on 111(G) x i!’(G). Therefore, by

lemma 5, 6
k 10 on which implies G

k 
= ~~~. Hence 0

0 
< Y. Applying the

inequalities which we know held for ~~~ we obtain

CL + A) (U
~ 

— ~~~ I F (x ,U0 
V 4 ’) — 

~‘(x ,U04’
) in 12 ,

B(U
0 

— 1J~4’
) IG (x,00 

V 4 ’) - ~~(x ,U
0~

) on A

— U
o~~ 1 0 on C’

Using an argument entirely analogous to the one used to show that 00 
< I , we obtain

from the above inequalities the fact that 
~0 
I 4’, thus concluding the proof of the

theorem since 0
0 also solves (6)—(8).

Remark. Suppose one has several pairs ( , 1~ J 1 ), 1 < j < r, as in the statement

of Theorem 11, and suppose that

C )  ( ‘ )  — I( j )
CL + A ) t ’  < F(x,U 1 (~ )) and (L -4- A ) I  ~ I F ( x ,U ) in H

94’
(J) < G (x,U

4’(~ )
) and B’Y~~~ > G (x ,U

1
) on A ,

and that < < 1~~~ for all 1 < j < m and all U € (‘1,1] where

= ~
(1) 

V 4’
(2 )  

V V 4’
(r) 

and ‘P = 1(1) A ~3’
C 2 > 

A •.~ A 1(r) Then there exists a

solution 0
0

€ [4’,1l to (6)—(8). To see this one merely notes that the first part

of the proof of Theorem 11 still shows there exists a solution 0
0 

to

CL + A ) u
0 = F(x,(U

0 
V 41) A ‘3 ’) in H

BU
0 = G(x , 

~
0o V 4 ’) A ‘3’) on A

U 0 =~~ on 1’

Next we note that

I ( j )
CL. + A)tp,~ I 

~k~~’ 
((U

0 
V 4 ’) A I) ) in (7

C . )  3,
and a corresponding inequality on A. Letting = — UOk 

we obtain the appre—

priate inequalities for which show that Uok 
< ~~~~~~~~~ Hence 0

0 
< I’ and similar

arguments lead to the conclusion that 0
0 1 4’. U
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4. The Nonlinear Parabolic Problem.

We turn our attention to the system

+ ~~~~ = f
k
(x
~
t,U) in (7 x (0 ,T) (14 )

B
k
u
k 

= on A
k 

X (0 ,T) , (15)

u.
K

(x ,t)  = ekCx) on rk 
x (0,r )  , (16)

u.
K

(x ,O) = u~~(x) in (2 . (17)

We assume that the only explicit time dependence appears in the 
~k

’
~~’ 

although this

can be generalized. For example, if the coefficients of I~ are regular enough, then

we can allow time dependence in the principal coefficients without complicating matters

too much. Time dependent boundary conditions however seem to lead to more serious

difficulties.

In order to obtain our results we shall employ the nonlinear semigroup theory of

Crandall , Liggett, and Pazy [7], [8). This seems to be appropriate for the investigation

of invariant sets since this type of seniigro up “lives” on a closed set which does not

necessarily have to be an entire Banach space. We first briefly describe th nonlinear

semigroup results which will be used.

Let X be a Banach space and for each t 10 let A(t) be an cheritol from

12(t) C x , its domain, into X which satisfies

l i x  + AA (t)x — (Y + XA Ct y~~ ~~ 
(1 — Xe) i l x — y l i

for all x,y € 12(t) and all 0 < A < l/w , where w is some given ~oait~v iumb~°.

Suppose that the closure , 12(t), of the domain is independent of t ime m l

12(t )  = 0 ( 0)  C Range (I + AA Ct)) for all 0 ~ t < T

and all 0 < A < 1/s . Fina l ly  we suppose that JA
( t )  ( I + X A ( t ) )~~~~ satisf -~

— JA tt)~~ 
< Ak (t) — p(r ) M (Ji x i J )

‘ 

for all 0 < t , t < T and x € 0(t), where ~i : 1O , T] + X is a continuou! u ’ )~~fl

of bounded variation and M : [0 , =) • [0,°’) is a non—decreasing function . a r

assumptions

T 
-31-
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lI(t ,s)x T 
~(t—s)/n~~ 

+ iCt  — s)/n)x
1=1

exists for all x € 12(0), 0 < s < t < T and

u r n  L/(t ,s)x = x V x  € 12(0) . . -

t+s

U(t,s) is called the propagation operator because if y : (0,T) • X is a continuous,

strongly differentiable map satisfying

+ A( t)y = 0 y(s) = y
0 

€ 12(0)

then y(t) = U(t.s)y 0 
[8, Theorem 3.1).

Our aim will be to find an invariant set which is equal to 12(0) for an appropriate

nonlinear semigroup. This means that we must find D ( t )  such that (15) is sat isf ied.

This makes it necessary to exactly determine the domain of the operator L. The d i f f i -

culty in this lies in the interpretation of the boundary condition (2). Since

a13 € L ((7) and D u , ~ L
2
(f)) their traces on 3H are not well defined. Howeverk 1 K

we can circumvent this problem as follows. Define B to be the unique linear operator

V(L) a ~U E  H’(W I LU - f~j e  R 112 ((2)

which satisfies

A
0
(U,V ) - (LU — HU ,v)  = (BU,y

0
V)

312

for all y E  H’((l). The existence of ~ is easily established via the Riesz represen-

tation theorem [21, and one can also check to see that if U and the coefficients of

L,H,B, and E are sufficiently well behaved then

8k”k = v.[a
~~
D.uk 

+ + 0kt’k 
- e~u .

where the right hahd side can be evaluated pointwise. Since 111(11) is a Hilbert space

1 1there exists an orthogonal projection operator : F! (H) • Fl (( 7 ) with

= R~~(l7). Suppose a € 81/2 (3(2) Let U C y~~ (a) and define

= y
o~

T
A
U € H~

”2 (3cz ) y
0
H~ (l’2) C H~

’2 C3c2) . This is a well defined map since if

= y
0
U’ then U — U’ e H~ (12) C H~ ((2) so that Yo~A

(0 — U ’ )  = y
0
CU — U’) = 0. Hence

we have a projection operator n6 
satisfying 

~
‘A~0 

= We also have the correspond-

ing adjoints tT~ 111(12), H~ (12) ’ and 7t~~ : H 1”2 ( 3 1 2 )  H~~~
’2
(3H)

r~I~
—32—
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Lemma 14. Suppose F € L2 (H) , G € H~~
/2C312) and 8€ 111(H), then U is a

generalized solution of (1)—C3) iff.

Ca) CL + A ) U  — MU = F (as distributions)

(b) ~~[BU — G) = 0

Cc) h
A 10 - 81 U — 8

Proof: If U is a generalized solution then

AA (U,V) = (F,V) + (G,V)312 v v€

In particular

AA (U,V) (LU + Au - HU ,v) = (F,V)

for all V € C (H) with compact support in 17, and therefore (a) is satisfied. By

the definition of B

A A (U,V) = (LU + AU - HU,V) + (~U,y0
V)312 = (F,V) + (G.10

V)3Q

for all V € H~ (Q), and hence

= (G ,YO
a
A
V) VV € H1~Q)

so that

- G )=w~y~ [~U - 1 2 )  = 0

Since is surjoctive , hence injective, (b) follows. Because U — 8 €

— 0) = U — 8. Conversely suppose (a), (b), Cc) are satisfied. Obviously

U - 8 €  11~ (l7). Using the definition of ~ together with (a), (b) and the fact that

0(H) is dense in L2(H) yields

A
x
(u,v) = (F,v) + (G ,y

0
V)312 ‘tf V €  H~ (Q) - U

Returning to the problem (14)— (l7) we see that the above lemma implies toot

A(t) : U • LU — F(x,t,U)

is a well defined operator from

e gl ((2) LU C L2 (H). SA
(U — 0) = U — 8,P(x ,t,U) € L2 (c’)

iT~ 1~U — jG(x,U)1 = 0)

into L
2 ((2) where j : L~ (3H) C H~~

/2 (3i2) . The closure of this set will , f the

-33-
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coefficients of L and B are “nice ’, be all of L2 (~ ). In order to obtain invariant - -

sets of the type described in the introduction we will instead define the domain by

U € fl 1(17 )~~LU C L ( H ) , 1I
d

( U _
~~

)) = u — ( 4,~~~~ [~~u —  jG(x,U )l= 0 ,F(x,t,U) C L2 (Q) , 4’ < U ~ ‘3’) -

The following hypothesis will also be needed.

(VI): Ci) There exists a constant K > 0 such that

F(x,t,U) — F(x,-r ,U) I < KJU~ It — r i

We also assume F satisfies (V) with 
~l 

independent of t, and ~ € F
2 C-~~) .

(ii) There exists a collection C (D((7))m such tha t is a dense subset

(with respect to the L
2
(H)-topology) of

D
0 

(u € H’( Q ) l L u  — ISJ C L 2 (H) , S AU = u , *ñu = 0)

Condition (i) is more restrictive than needed. Condition (ii) is a technical necessity

which can be replaced by additional regularity requirements on the coefficients. For

example, if a~
3 and d~ are of class C1 (c2 ) then we can set ~~~ (DW ))W If

these coefficients are sectionally C
1 

with discontinuities across surfaces in H

whose union I’ has a closure whose n-dimensional measure is zero then can be

taken to be the collection of all C ((7) functions with compact support in 2\F.

Please recall that F(x,t,tJ) = H(x,t)U + F ( x,t, U) and G(x,U) = E(x)U + G(x,U).

Lemma 15. Suppose (I)— (VI) are satisfied , 8€ H1(C’) 0 1 (H), and for each fixed

t € [0 ,T ) ,  with T < = , we have F C F (S’P) and G C F (3S
’P ). For 1 < i Q we

q/2 4’ p 4’ — —
suppose 

~
i (x ,t,u

1
.u
2~~

. . ., u
m
) and g.(x,u

1
,u
2 

U
m
) are nondecreasing in u . for

all  j ~ i, 1 < j < I. Finally suppose that -k < < ‘P and that for all U € [4’,1I

L4’ < F(x ,t,U
4’
) and LI I F(x,t,U

’3’) in H x (0,T)

84’ < G(x,U )  and BI I G ( x ,U’3’) on 5 ‘ [0 ,T)

Then A C t )  sa t isf ies:

Ci; 1( 0  + AA (t) U )  - (V + XA (t)V) II~ 1 Cl - X~~) lu - vu 0

for all U,V € D and all 0 A ~ w~~ , where w is some fixed positive number.

(ii) The 
2
(~l) — closure of 1) is ~ {U € L2 ()j ~ U < I), a set we will

denote by 14’,11.

—3 4—

____________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
-
~~~~~~~~~

——- 
~~~~ ~~~~ 

_________



- -.- - 
~~~~~~~~~~~~~~~~~ — - _ - - - - - —-- — 

__ -w.

I

(iii) Range (I + AA (t)) D (4’,’P}

C iv )  If W ( t )  + AA (t)w(t) = F
0 ~ 

[4’,’Pj (i.e. W ( t ) = JA (t
~~o

) t!cn

llW(t 1) - W (t
2
) li~~ cit 1 - t21 II F II 0 + 1)

— for all t
1
,t
2 

€ [0 ,T ) ,  where C is a constant.

Proof: Ci) lb — V bl 0ll U + AA(t)u —V .- A 4 ( t ) V l 1 0 >

(U — V,U — V) + AA
0
(U — V,U — V) — A(F (x,t,U) — F ( x ,t,V ) , U - V)

— A (G (x,tJ) — G (x ,V),U — V)3() — [1— A C1.i
0 

+ y m ( C � ) ) ] I i U — V I i ~

where we used (VI), lemma 2, and the definition of y.

Cii) Let U be the generalized solution of

CL + A)tj = F(x,t.U) in H , (A >

BU = ~ (x, U) on A

on C’ .

Suppose W is any element in such that • < U + W < ‘P. Sin W C’ c-r~

neighborhood of 3(7 we have

(a) CL + A — H)(U + W) = F(x,t,U) + CL + A — H)W€ ~
2
(12),F(7.~, 1.,U + WI

(b) (~~ U + W) — jâ(x,y
0
(U + WI)) =

;~~[BU — j~~(x ,y
0
U)J = 0

Cc)

Hence D D {u + wiw C D
00,4~ 

< U + W < v), which upon taking c1o~ ure wi th r -c to

2 -the t (12) topology yields

D fu + wiw e L2 (l7), 4’ < U + W < I )  =

( ii i)  Let F
0 

€ [4’,’V) and consider

U + LU = ~‘(x,t,U) + ~~
- F0 in (7

Dii = a(x,U) on A

on r .

By Theorem 11 we have a generalized solution U € [‘~,IJ if I — (~ + y ) A

‘4I - —3 5—
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Civ) Let W . + A.4(t,)W = F (i = 1,2). Then1 1 3. 1

C - i-— u0)lb W 1
+W

2l~~ + t0lIw 1— w 2 il~ < A
11~

(W
1 

— W
2,W1 

— w
2
)

~ (F(x~t1~
W
1
) — F(x,t

2
,W
1
),W

1 
— w

2
) + (F(x ,t

2
,W
1
) — F ( x ,t

2
,W
2

) , W
1 

— W )

+ ((.,(x,W1
) — G(x,W

2
),W

1 
— W

2
)
A 

+ ~~- (F
1 

— F ,W
1 

— W )

~ c’ {lt 1 - t2 l l i w 1il 0 liw 1- w 2 11 0 + lw 1 - w2 I)~~+ lw 1 - w2 lI~~2~~
}

+ 
~ llF’ u — F2 11 011W l — W2 li O~

C Using lemma 2 we see that there exists a constant C ’( r
0
) such that the above inequality

implies

~~~~~~~ 
C’(c0))(1W 1

— W
2 11 0 + e0/21(W 1 — W 2 I1 < C ’1t

1
-t

2 1 11w 1 i1 0÷ ~ IiF 1 -F 2 lI 0 ( 18)

First we let t
2 

= t
o
, some fixed value in (0,T), and W2 

= W0, the solution

ponding to the case where = 0. We then obtain

~~o 
C’(60))l1 w1 l1 ~ ~~o 

C’(e0))liW 0lI +C~TlIW , I j +

or

(1 — A ( p 0 + C ’ ( c 0 ) j ) l I W 0 ll II F~II
lw ~~.z ( A <  A )

— 
1 — A 0 1ii0 + C’(c

0
) + C’TJ 

0

where A
0 

is chosen so small that the denominator is larger than ~~~. Hence we have

Ilw~lI~. 2 11 WO II + 2Il F~ I i
Returning to inequality (18) and selling F

1 
F 2 = F ob tain , for 0 < A < A , 

-
~~ 

-

IIJ A Ct 1)F - J1 (t 2)Ftl = lw 1 
- W

211 < 4AC ’It
1 
- t2i {Il w~ - + .

This concludes the proof of the lemma which guarantees the existence o~ a ret ;a~ inn

operator for a nonlinear semigroup on (4’,’P) generated by A. •

Definitions. U : (O,T) • L2 (C2 ) is called a strong solution of (14)— (l7) if

(a) U is continuous on [0,T) and 0(0) = ~
0 .

(b) U is absolutely continuous on compact subsets of (0,T).

Cc) U is differentiable almost everywhere on (0,T) and is a qenerali~ 

solution of C14)—(16) (regarded as an elliptic problem) for almost all t ( ,1’ - .

—36—
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A subset S C L
2

(17) is called an invariant set for (14— 1 16) if 0(t) € 1 fo r  a l l

t € (s ,T) whenever U is a strong solution of (l4)—(l7) with U(s)

Theorem 16. Suppose the hypotheses of lemma 15 are satisfied (e;cept T = = is allowe0).

Then there exists a propagation operator U(t ,s) def ined on [41 ,1] corrc-cpording to

problem (14)-(16). In particular [41,1] is an invariant set for this problem. Moreover,

if the graph of A(t) is closed then L/(t,0)U
0 

is a strong solution for each U0 € D.

Proof. The existence of U(t ,s) follows ~rorn the lemma. By ‘heojeni 3.1 in [8) any

strong solution U of C14)—(17) with U(s) € [41 ,1) must satisfy U(t) = U(t ,s) U°, t l s ,

and hence [41,11 is an invariant set. The last assertion of the theorem follows from

Theorem 3.4 in [81. U

As in the elliptic case there are various possible corollaries we could state.

One such result was stated in the introduction. We shall state two more.

Corollary 17. Suppose (I)—(Vi) are satisfied , 0€ 111(17) fl L ((2), 4’ and I are

members of 11~
’ (17) fl C ( H )  0 L ((2), F and 12 are continuous on (2 x and (2 X R

m

respectively and for each 1 < k  < m  f
k

(x .t,ul~
u
2~~

. . . , u )  and 
~k

(x ,u
l

l u
? 

, . . ,  u )

are nondecreasing on u . for j ~ k. Suppose 41 < 0 < ‘P and

• L41 ~~F(x,t,4’) and LI > F(x,t,1) in 12 x [0 , T)

B4’ < C . -’ x ,~~) and B’)’ I G(x,’i’) on A x [0 , T)

Then [41,1] is an invariant set and !(t,0)U0 is a strong solution whenever

u~~e D C [41,11.

Proof: We only have to establish that A(t ) is closed. Suppose U D and u -* U

in L2 (12) and A (t)U S F
n 

-~ F in L2 U> using (18) one easily se -s ti-at this means

0 -~~ u in jj1()3) and hence -* in L2 (3Q) . But since F and G sa t i s fy

the Caratheodory condition for each t this means F(x ,t , U
n

) . F ( x ,t,i’ in

while G(x,U )  • G(x,U) in L~~(3(7). To see this we use the fact that the U ’s are

uniformly bounded and a standard continuity result for Nemytekii n --r1t ’r~ [14 , p. 221.

Using (18) once agai’i we see that J
A
(t)l and hence A(t ), is clos~ ~l . U

We also have the following result for the case where we have nc 1OaO~~Of l I  ty

requirement on the coupling

-~1
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Corollary 18. Suppose ( I ) — ( V I )  are sat:~~t i t , 
1 () L ( - )  and for each :~ x.-

t €  [0,T) we have F l  
q/2~

’
4’

1 ~nd ~; €  l’
~ (~~~~ ~

- , -r e I~~~~~~~< i .  Then ~~~~ is

an invariant set provided tha t for al l  U € 1 : , ]  WI- h ay - -

L
k
c
k ~ 

f
k~~~

,u
l~

h3
2 

U
k l ~~~k

lU
k+l ~~~ (1 < k < i )

8
k~ k ~~

9k~~~~
U
l l U2 ~~_ l~~ k

lU
k+l 

urn
) (1 < k  < d )  , L

L
k~k 1 

f
k
(x ,U

l
,u
2 

uk l l
~
)
k

u
k+] 

,...,u )  U k 9. )  , V
I ~~(x.u1l u5 Uk l ~~

)
k.uk+l u )  U k 2) -

These inequali t ies  are essenti a l ly  requiremen ts that the ‘ velor i~~~’ on t h.-

( u l u k = ‘
~k~ 

and (Uju~ = Pk
] are in the right direction. TI one has monctani 1 , t H -~

“velocity” only needs to be checked at the ‘ ed qee ’ {Ulu. = c . ,  1 < i < dl and

{Uiu . = 4’., 5 < < () (the statement of the theorem) while in the  extreme case of

totally monotenic coupling (Corollary 17) we on ly  need to check the “velocities ” at

the “vertices ” 4’ and ‘P.

Proof: By the remark at the end of the section on elliptic systems we see that it

su f f i ces  for the inequalities to hold for all U € [ t - , ’)’] . He nce part ( i i i )  of lemma 15

is still true . The other parts of lemma 15 are obviously also still true since the

relevant hypotheses are those which this lemma and Theorem 11 have in common . Therefore  ‘

the proof of Theorem 16 again applies here. U

In conclusion we mention that these results can be generalized to problems invo lv ing

even more general , but still time independent, boundary conditions on Lipschitz con—

tinuous boundaries. We can also allow time dependence in the elliptic operators L
k

provided the coefficients are sufficiently regular. This is done by apply ng the full

power of the semigroup resul ts  in [81.

- - -c
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APPENDIX

Theorem. Suppose that u e H~~~2) and that for all v in H1 (H)

Cu, v) a / (a~ 
‘ (U . u) (D v )  + d’uD. v + b1vD. U + Cc + A)uv)dx / g’- S

3(2

where we ass~nne that I)—(III) are satisfied. (Since we are dealing with the one

comF’)nent case, m = I, the subscript k is deleted), that A > )J and g € L~’ ( 3 H ) .

Then u €  L W).

Lemma. ([19, p. 241). Let r = P (t) be a nonnegative, nonincreasing function on the

half line t 1 0 such that there are positive constants C, a and 8 such that

c (h) < C(h — kl m
[C(k))B for h > k 10

Then, if 8 > 1, there exists a constant d > 0 such that ~(d) = 0

(e.g. d = C [C(0)] 1
2~~

8 1
~ ).

Proof of the Theorem: Let v = (sgn u)max( lul — k,0) = Cu — k) V 0 + Cu + k) A 0 €

We have, letting E(k) = {x € 
~l iuCx) I 1 k):

ii i ia A (u ,v) = (I + f )(a D .u + d u)D
~

v + (b D
~
u+ Cc + X)u)v]dx

E ( k )  H \ E ( k )

= J ((a13D .v + d’v ) D . v+ v b ’D . v + Cc + A )v2)dx
E ( k )  3 1 1

+ k / (d
iDiv + cv + Av)dx — k f (d~ D.v + cv + ~v) -<

{u(x)lk) {u(x)’z-k}

= a
A
Cv ,v) + k f (d’D jvl + c l v i + x l v l dx

E(k) 1

= a3 (v ,v) + k J (d 1D.Iv ! + c iv I + A iv I )dx
(1

= a1 (v,v) + Ic J Cc + A — D.d
1
)lv I + k f V . d1l v b d S

1 
3(2

1

Hence aA (u,v) I aA (v ,v). Also there exists a constant K 10 such that

) lv lI~~ ~~~~~~~ 
< 

~~~~~~~ 
= K 

a)) gv dS

If we set F(k) = E (k) ‘ 3(2 then

• 
I gv dS 

FCk) 
gv dS 

~ ll~ l b O,~,~ (k)  IlY ~V lI Q,p,F ( k )  ~ c0li g~l 0 ~~~~~ . ~~~~ 1 ~Il~ ‘
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where p = 2Cm — 1)/(n — 2) and r = 2(n — 1)/n . We note that p > r, hence ano ther

application of H&lders inequality yields

ll~ Il 0,~,p(~) ~ llgil~~~~~ 
m(F( k ) )  r_ l/p 

-

Using the Sobolev inequality ll y 0vll 0 ~Q < C
0~~

v~~1 
and the fact that v = 0 on

Bl2\F (k) we have

ibY oVll op F (k)~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Hence if h k then

m (F(h))
~~~~

Ch - k) 
~ l l~oVll o,p,F(k) ~ KC~ l i~~l l 0,~ ~

Letting riCh) = m ( F ( h ) )  we have , for h > k ‘ 0

riCh) < (KC~~ gj~0 
)~~(h — k) 

C’ri (k) 
(h r — 1/p)p

An application of the lemma concludes the proof.

S
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1
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2
,...,L )  (L . a linear second order elliptic operator)
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and U (U
1

I U
2
1...,U). The main result essentially says that S = < U  :::. Y }

is an invariant set if
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and

B~ < G (~~) and B1V > G (~~) on .
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associated nonlinear elliptic problem.

a


